
 

 

 

 

 

Local Search Heuristic Inspired in Particle Swarm 

Optimization for Reducing Collisions in Constrained 

Navigation (RCCN) Problems 
 

 

Oregel J., Puga H., Zamudio V., Carpio M., Ornelas M. and Mancilla E. 

 

 

Divsión de Estudios de Posgrado e Investigación 

Instituto Tecnológico de León 

León, Guanajuato, 37290, México 

{josue-oregel, hector.puga}@itleon.edu.mx 

 

Abstract: Collisions between mobile objects cause a negative impact to navigation 

systems, therefore reducing the number of collisions is deemed as an optimization problem. 

Besides, Particle Swarm Optimization is an algorithm intended to find solutions to 

optimization problems. This paper introduces a heuristic inspired in Particle Swarm 

Optimization to be applied to problems that we have called Reducing Collisions in 

Constrained Navigation (RCCN), detecting collisions between mobile objects in a roadmap 

and reducing the number of collisions through the establishment of wait times. An analysis 

based on the outcome of the heuristic's application to an instance of RCCN problems is 

presented finding that is possible to reduce collisions between mobile objects using 

Artificial Intelligence techniques. 
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1. INTRODUCTION 

 

The main task of an Autonomous Mobile Object 

(AMO) is to unwind itself on an environment in a 

natural way to achieve assigned tasks avoiding as 

possible problems, conflicts or complications in 

navigation. When the navigation system is bigger, the 

complexity increases and navigation planning can be 

considered as an optimization problem, for example 

for finding the shortest distance or movement time or 

taking out conflicts like collisions, deadlocks and 

congestions. For this reason it is desirable that AMOs 

can possess some kind of intelligence. 

 

Artificial Intelligence (AI) can be defined as those 

systems that receive perceptions from the 

environment and react performing some actions in 

order to autonomously solve problems that usually 

require certain level of intelligence (Russell, et al., 

2009). AI is a research area which focuses primarily 

in mimic fundamental aspects of biological 

intelligence to solve complex problems, displaying 

cognitive skills such as behavioral autonomy, social 

interaction, learning capabilities and evolution. 

 

Particle Swarm Optimization (PSO) is a Bio-inspired 

optimization method which mimics the natural self-

organizing behavior observed in many animal social 

groups, normally controlled by a leader, where 

individuals may not have total knowledge neither of 

the behavior of the group nor the environment. 

Despite this, they have the ability to gather and move 

together, based on local interactions between 

individuals (Floreano and Mattiussi, 2008). From the 

simple local interaction between individuals more 

complex collective behavior emerges. PSO was 

originally intended to find solutions in continuous 

spaces; however, some binarized versions have been 

developed in order to solve discrete problems 

(Engelbrecht, 2005). 

 

A numerous quantity of research proposals related to 

autonomous navigation using AI techniques can be 

found in the state of the art with a diverse set of 

approaches like: agents, cell decomposition, flocking, 



networking and robot perception, etc. (e.g. Chiew 

and Qin, 2009; Gendreau, et al., 2008; Ghasemzadeh, 

et al., 2009; Kala, et al., 2010; Lin, 2011; Mirtich, 

1997; Peasgood, et al., 2008; Peng and Akella, 2005; 

Qiu and Hsu, 2003; Sharma, et al., 2005; Sujit, et al., 

2012; Törnquist Krasemann, 2011). 

 

In this work is addressed a set of problems that we 

have called Reducing Collisions in Constrained 

Navigation (RCCN), which are related with known 

routing and scheduling in navigation problems as 

Vehicle Routing Problems (VRP) and Automated 

Guided Vehicles (AGV), where RCCN is different to 

both problems due to its characteristics. 

 

The main contribution of this paper is the 

introduction of an optimization approach inspired in 

PSO to be applied in RCCN problems with the goal 

of detecting and reducing collisions between mobile 

objects on the intersections in constrained navigation 

systems with roadmaps given as graphs, where the 

nodes and edges connecting the graph can play the 

role of paths that are navigable by the mobile objects. 

The optimization’s objective is achieved using a 

model that makes possible to detect collisions 

between the mobile objects in common nodes of the 

navigation system and provides a platform to reduce 

the number of collisions through the establishment of 

wait times in previous nodes. 

 

This document is organized as follows: section 2 

presents a briefly description of the RCCN problems 

and the solution model proposed, section 3 

introduces a heuristic inspired in PSO to detect and 

reduce collisions in RCCN problems, in section 4, 

the application of the heuristic to a RCCN specific 

case is presented and section 5 displays the resulting 

outcome from the PSO approach application. Finally 

in section 6, a conclusion and work that is being done 

is discussed. 

 

 

2. THE REDUCING COLLISIONS IN 

CONSTRAINED NAVIGATION (RCCN) 

PROBLEMS AND SOLUTION MODEL 

 

These constraints define the RCCN problems: 

 

1. The navigation environment is a roadmap 

considered as an undirected graph that connects 

its vertices (nodes) with navigable edges. 

2. A path is a navigable by mobile objects 

succession of edges connected by nodes of the 

graph. 

3. A vertice can belong to more than one 

navigation path. 

4. An edge belongs to no more than one path and it 

can have just one navigation way. 

5. Paths are predefined and immovable for each 

and all of the mobile objects within the 

navigation system. 

6. A path is navigable only by one mobile object 

and it belongs only to one path, therefore, there 

are as many numbers of mobile objects as the 

number of paths in the system. 

7. For study purposes, mobile objects are 

considered punctual elements, i.e., without 

dimensions. 

8. The movement velocity is the same for all the 

mobile objects in the paths; it is constant and it 

keeps discreetly measured values. 

9. A collision event occurs if there is a match at the 

same time between mobile objects in the same 

vertice of the roadmap; therefore, it is not 

allowed to accommodate more than one mobile 

object in a vertice at a time, except in the case of 

starting or ending vertices of a path, similar to 

what happens in real terminals. 

10. It is possible to set a timeout or wait time         

(te | te ∈ ℕ ∩ 0) for each mobile object at each 

vertice of its path, and this wait time can be 

changed at discrete intervals of time (∆te ∈ ℕ), 

in order to avoid possible collisions in common 

vertices of their path with paths of other mobile 

objects. 

11. The beginning of the movement is simultaneous 

for all the mobile objects of the navigation 

system, i.e., there aren't allowed wait times for 

the mobile objects in initial vertices of their 

paths. 

 

The total occupancy time of each node of a path is 

formed with the composition of three different data: 

the original movement time (inherited attribute), the 

wait time (assigned attribute) and the delay time 

caused by the wait times at preceding nodes in the 

path (calculated attribute).  

 

The sum of the original movement time and the delay 

time caused by the accumulation of wait times in 

preceding nodes produce the arrival time to a node. 

Additionally, when a mobile object arrives to a node, 

it stays in the node for the interval of time earmarked, 

i.e., since a mobile object arrives to a node of its path 

and during the wait time assigned in the node, that 

mobile object will be occupying this node. 

 

When a node common to two paths is not the initial 

or final node of one of the paths, a collision event is 

identified if there is an intersection between the 

intervals of occupancy of the node. To compute the 



total collisions number, the collision events currently 

in the system are summarized. 

 

Once a collision event has been detected, a wait time 

can be assigned for one of the conflictive paths in the 

preceding node to the conflicting common node in 

order to eliminate the collision event individually. 

 

Even though it is possible to assign arbitrary wait 

time values to reduce collisions in the system, an 

implied intention in all the navigation systems is the 

accomplishment of all the paths in the shortest 

possible time, therefore is always sought the 

assignment of wait time values near to 0 for all the 

nodes of the paths. 

 

 

3. HEURISTIC INSPIRED IN PSO 

 

PSO (Kennedy and Eberhart, 1995) has a set of 

entities called particles in a population emulating the 

social behavior of natural social models, where the 

individuals of the population in a swarm can combine 

their own current history (φ1) and global information 

(φ2) to determine their movement through a search 

space based on an inertia factor (ω), looking for the 

solution to a problem (Algorithm 1). 

 

Algorithm 1. PSO (taken from (Thiem and Lässig, 

2011)) 
 

Input:  Problem P and a solution space S 

Output:  Solution γ ∈ S 

Requirement: ω: Velocity’s influence factor 

Requirement: φ1: Particle’s cognitive parameter 

Requirement: φ2: Particle’s social parameter 

1: α ← compute_initial_states (variables) 

2: β ← α 

3: for (all particles i from 1 to n) do 

4:   if (γ = null or f (βi) < f (γ)) then 

5:     γ ← βi 

6:   end if 

7: end for 

8: δ ← 0 

9: repeat 

10:   α, δ ← compute_new_state(α,β,γ,δ,ω,φ1,φ2) 

11:   for (all particles i from 1 to n) do 

12:     if (f (αi ) < f (βi )) then 

13:       βi ← αi 

14:       if (f (βi ) < f (γ)) then 

15:         γ ← βi 

16:       end if 

17:     end if 

18:   end for 

19: until (termination_condition(variables)) 

20: return γ 

 

Although PSO was proposed to solve continuous 

problems, several PSO versions have been developed 

to be applied on discrete problems (e.g. (Carlisle and 

Dozier, 2001; Clerc, 1999; Kennedy and Eberhart, 

1997)). 
 

 

3.1. The problem and the solution space 

 

In RCCN problems are used two data sets to describe 

a navigation system: 

 

1. A “Weighted Connectivity Matrix” (Mc), of n x 

n size, which is a weighted adjacency matrix and 

can be represented by a graph. The Mc matrix 

contains information about connections and 

movement time (t(i j)) among the n nodes of the 

navigation system. 

 

2. A set of sequences of nodes that represent a 

roadmap, i.e., each of the m navigation system 

paths (Rk), where each path has its own quantity 

s of nodes (n) (equation 1). 

 

Rk = n(k 1), n(k 2), ... , n(k (s-1)), n(k s) 

where 1≤k≤m; k,m,s ∈ ℕ 
(1) 

 

To handle the total movement time to the paths, as 

well as to detect and to reduce collisions in the 

navigation system, three matrices are used: the MTo 

matrix to the original movement times, the MTe 

matrix to the wait times and the MTr matrix to the 

delay times, where solely the wait time’s matrix MTe 

can be directly modified to manage the reduction of 

the collisions.  

 

Once a modification has been made to MTe, it is 

necessary to compute the problem’s fitness function 

value, i.e., the number of collisions in the navigation 

system. Each evaluation of the problem’s fitness 

function is known here as a function’s call. 

 

 

3.2. Setting up initial states 

 

Each one of the n particles α of the swarm has an 

initial position appointed by its position property, 

which it is an MTe matrix initialized with zero in all 

its positions (equation 2). Due to this fact, all the 

particles of the swarm have initially the same 

position, i.e., the same initial number of collision 

events. 

 

MTeα={te(i,j)}α  

where te(i,j)=0; 1≤i≤m; 1≤j≤n 
(2) 

 



3.3. How to Compute a New State 

 

To compute a new particle’s position implies to 

change the values of its MTe matrix elements, trying 

to reduce the number of collision events in the 

navigation system based on the model for RCCN 

problems proposed. The new particle’s position is 

reached executing a random search of a node with a 

collision event, and once it has been found, randomly 

choosing one of the paths involved in the collision 

event and changing the wait time in the node located 

before of the conflictive node in the chosen path; i.e., 

changing the wait time in an element of the particle’s 

MTe matrix supported by a random path selection 

criteria. It helps to make a binary decision to modify 

either the first or the second conflictive path 

(Algorithm. 2). 

 

Algorithm 2. PSO’s new state procedure 
 

Requirement: A particle’s wait times MTe matrix 

1: repeat 

2:    randomly select a node from MTe 

3:    if (there is a collision in the node selected) then 

4:       randomly select a conflictive path 

5:        if (first conflictive path is selected) then 

6:         increase the wait time to the preceding node 

at the first path to the node selected 

7:        else 

8:         increase the wait time to the preceding node 

at the second path to the node selected 

9:        end if 

10:   end if 

11: until (a collision event has been eliminated) 

12: return the particle’s MTe matrix updated 

 

In this way, the position of the particles at each 

iteration of the heuristic would have a probabilistic 

chance of being modified (Cervantes, et al., 2005; 

Poli, et al., 2007) in either the first or the second 

path, conducting to reach particle’s new positions in 

a stochastic way which produces different problem’s 

fitness function values to the particles of the swarm; 

hence, there can be multiple wait time’s 

configurations to reduce collisions in a navigation 

system. 

 

 

3.4. Termination Criteria 

 

There are two criteria to stop the heuristic: 

 

1. When a specific number of function calls have 

been reached. 

 

2. When there are not collisions in the navigation 

system. 

 

 

4. APPLICATION OF THE PSO BASED 

HEURISTIC TO AN RCCN PROBLEMS 

INSTANCE 

 

To test the PSO approach solving RCCN problems, a 

Java application was implemented and applied to a 

RCCN problems instance with a roadmap with 27 

nodes and 5 routes where there are 6 collision events 

(Fig. 1). 

 

 
 

Fig. 1. An RCCN problems instance with 27 nodes, 5 

navigation paths, and 6 collision events. 

 

 

5. RESULTS 

 

The PSO inspired heuristic applied to the RCCN 

problems instance using the number of function’s 

calls as the termination criteria were executed with 6 

different termination criteria values to observe its 

performance (Fig. 2, Table 1). 

 

 
 

Fig. 2. PSO inspired heuristic’s behavior using a 

RCCN problems instance. 

 

 

 

 

 



Table 1. Results of PSO inspired heuristic using a 

RCCN problems instance 
 

Termination criteria 

(function’s calls) 

Best problem’s fitness 

function value 

(number of collisions) 

0 6 

10 6 

20 3 

30 2 

40 1 

60 1 

 

Table 1 depicts that once the fitness function 

evaluation has been executed 40 or 60 times, the 

navigation system remains with a collision event; this 

is due to the restriction that indicates no wait time at 

the first node of a path. However, the collision event 

in node 18 between paths 4 and 5 cannot be 

eliminated. 

 

A configuration to the RCCN problems instance 

presented here is described below: the particle’s MTe 

matrix with the best problem’s fitness function value 

determines the wait times to avoid collision events 

displayed in Table 2. Be aware that the path R1 does 

not change its wait times, i.e., its movement time 

remains unchanged. 

 

Table 2. Wait times to the RCCN problems instance 

determined using the PSO inspired heuristic 
 

Path 
Configuration 

Node Wait time 

R2 9 2 

R 3 8 1 

R 4 27 1 

R 5 8 1 

 

 

6. CONCLUSIONS 

 

Due to the fact that reducing the amount of collisions 

between mobile objects in navigation systems can be 

deemed as an optimization problem it is necessary to 

establish methodologies to try to solve this kind of 

problematic. 

 

In this paper is presented a local search heuristic 

inspired in PSO to be applied to Reducing Collisions 

in Constrained Navigation (RCCN) problems with 

the goal to detect and reduce collisions in navigation 

systems, generating wait times in previous nodes to 

those which have collision events in the intersection 

of paths for mobile objects. 

 

As a consequence of the application of the heuristic 

proposed to an instance of RCCN problems, it is 

observable that the heuristic is on average reducing 

collisions, i.e., each of the heuristic executions 

provides a solution result with different wait times 

configurations for the navigation system. 

 

Actually we are working on generating test instances 

with a higher number of collision events in order to 

be able to implement the heuristic inspired on PSO 

using these test instances to obtain the average 

performance of the heuristic. The performance of the 

heuristic results provides the elements to compare it 

versus other techniques. 
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