

Local Search Heuristic Inspired in Particle Swarm

Optimization for Reducing Collisions in Constrained

Navigation (RCCN) Problems

Oregel J., Puga H., Zamudio V., Carpio M., Ornelas M. and Mancilla E.

Divsión de Estudios de Posgrado e Investigación

Instituto Tecnológico de León

León, Guanajuato, 37290, México

{josue-oregel, hector.puga}@itleon.edu.mx

Abstract: Collisions between mobile objects cause a negative impact to navigation

systems, therefore reducing the number of collisions is deemed as an optimization problem.

Besides, Particle Swarm Optimization is an algorithm intended to find solutions to

optimization problems. This paper introduces a heuristic inspired in Particle Swarm

Optimization to be applied to problems that we have called Reducing Collisions in

Constrained Navigation (RCCN), detecting collisions between mobile objects in a roadmap

and reducing the number of collisions through the establishment of wait times. An analysis

based on the outcome of the heuristic's application to an instance of RCCN problems is

presented finding that is possible to reduce collisions between mobile objects using

Artificial Intelligence techniques.

Key Words: Navigation, Optimization, Mobile Objects, Particle Swarm Optimization.

1. INTRODUCTION

The main task of an Autonomous Mobile Object

(AMO) is to unwind itself on an environment in a

natural way to achieve assigned tasks avoiding as

possible problems, conflicts or complications in

navigation. When the navigation system is bigger, the

complexity increases and navigation planning can be

considered as an optimization problem, for example

for finding the shortest distance or movement time or

taking out conflicts like collisions, deadlocks and

congestions. For this reason it is desirable that AMOs

can possess some kind of intelligence.

Artificial Intelligence (AI) can be defined as those

systems that receive perceptions from the

environment and react performing some actions in

order to autonomously solve problems that usually

require certain level of intelligence (Russell, et al.,

2009). AI is a research area which focuses primarily

in mimic fundamental aspects of biological

intelligence to solve complex problems, displaying

cognitive skills such as behavioral autonomy, social

interaction, learning capabilities and evolution.

Particle Swarm Optimization (PSO) is a Bio-inspired

optimization method which mimics the natural self-

organizing behavior observed in many animal social

groups, normally controlled by a leader, where

individuals may not have total knowledge neither of

the behavior of the group nor the environment.

Despite this, they have the ability to gather and move

together, based on local interactions between

individuals (Floreano and Mattiussi, 2008). From the

simple local interaction between individuals more

complex collective behavior emerges. PSO was

originally intended to find solutions in continuous

spaces; however, some binarized versions have been

developed in order to solve discrete problems

(Engelbrecht, 2005).

A numerous quantity of research proposals related to

autonomous navigation using AI techniques can be

found in the state of the art with a diverse set of

approaches like: agents, cell decomposition, flocking,

networking and robot perception, etc. (e.g. Chiew

and Qin, 2009; Gendreau, et al., 2008; Ghasemzadeh,

et al., 2009; Kala, et al., 2010; Lin, 2011; Mirtich,

1997; Peasgood, et al., 2008; Peng and Akella, 2005;

Qiu and Hsu, 2003; Sharma, et al., 2005; Sujit, et al.,

2012; Törnquist Krasemann, 2011).

In this work is addressed a set of problems that we

have called Reducing Collisions in Constrained

Navigation (RCCN), which are related with known

routing and scheduling in navigation problems as

Vehicle Routing Problems (VRP) and Automated

Guided Vehicles (AGV), where RCCN is different to

both problems due to its characteristics.

The main contribution of this paper is the

introduction of an optimization approach inspired in

PSO to be applied in RCCN problems with the goal

of detecting and reducing collisions between mobile

objects on the intersections in constrained navigation

systems with roadmaps given as graphs, where the

nodes and edges connecting the graph can play the

role of paths that are navigable by the mobile objects.

The optimization’s objective is achieved using a

model that makes possible to detect collisions

between the mobile objects in common nodes of the

navigation system and provides a platform to reduce

the number of collisions through the establishment of

wait times in previous nodes.

This document is organized as follows: section 2

presents a briefly description of the RCCN problems

and the solution model proposed, section 3

introduces a heuristic inspired in PSO to detect and

reduce collisions in RCCN problems, in section 4,

the application of the heuristic to a RCCN specific

case is presented and section 5 displays the resulting

outcome from the PSO approach application. Finally

in section 6, a conclusion and work that is being done

is discussed.

2. THE REDUCING COLLISIONS IN

CONSTRAINED NAVIGATION (RCCN)

PROBLEMS AND SOLUTION MODEL

These constraints define the RCCN problems:

1. The navigation environment is a roadmap

considered as an undirected graph that connects

its vertices (nodes) with navigable edges.

2. A path is a navigable by mobile objects

succession of edges connected by nodes of the

graph.

3. A vertice can belong to more than one

navigation path.

4. An edge belongs to no more than one path and it

can have just one navigation way.

5. Paths are predefined and immovable for each

and all of the mobile objects within the

navigation system.

6. A path is navigable only by one mobile object

and it belongs only to one path, therefore, there

are as many numbers of mobile objects as the

number of paths in the system.

7. For study purposes, mobile objects are

considered punctual elements, i.e., without

dimensions.

8. The movement velocity is the same for all the

mobile objects in the paths; it is constant and it

keeps discreetly measured values.

9. A collision event occurs if there is a match at the

same time between mobile objects in the same

vertice of the roadmap; therefore, it is not

allowed to accommodate more than one mobile

object in a vertice at a time, except in the case of

starting or ending vertices of a path, similar to

what happens in real terminals.

10. It is possible to set a timeout or wait time

(te | te ∈ ℕ ∩ 0) for each mobile object at each

vertice of its path, and this wait time can be

changed at discrete intervals of time (∆te ∈ ℕ),

in order to avoid possible collisions in common

vertices of their path with paths of other mobile

objects.

11. The beginning of the movement is simultaneous

for all the mobile objects of the navigation

system, i.e., there aren't allowed wait times for

the mobile objects in initial vertices of their

paths.

The total occupancy time of each node of a path is

formed with the composition of three different data:

the original movement time (inherited attribute), the

wait time (assigned attribute) and the delay time

caused by the wait times at preceding nodes in the

path (calculated attribute).

The sum of the original movement time and the delay

time caused by the accumulation of wait times in

preceding nodes produce the arrival time to a node.

Additionally, when a mobile object arrives to a node,

it stays in the node for the interval of time earmarked,

i.e., since a mobile object arrives to a node of its path

and during the wait time assigned in the node, that

mobile object will be occupying this node.

When a node common to two paths is not the initial

or final node of one of the paths, a collision event is

identified if there is an intersection between the

intervals of occupancy of the node. To compute the

total collisions number, the collision events currently

in the system are summarized.

Once a collision event has been detected, a wait time

can be assigned for one of the conflictive paths in the

preceding node to the conflicting common node in

order to eliminate the collision event individually.

Even though it is possible to assign arbitrary wait

time values to reduce collisions in the system, an

implied intention in all the navigation systems is the

accomplishment of all the paths in the shortest

possible time, therefore is always sought the

assignment of wait time values near to 0 for all the

nodes of the paths.

3. HEURISTIC INSPIRED IN PSO

PSO (Kennedy and Eberhart, 1995) has a set of

entities called particles in a population emulating the

social behavior of natural social models, where the

individuals of the population in a swarm can combine

their own current history (φ1) and global information

(φ2) to determine their movement through a search

space based on an inertia factor (ω), looking for the

solution to a problem (Algorithm 1).

Algorithm 1. PSO (taken from (Thiem and Lässig,

2011))

Input: Problem P and a solution space S

Output: Solution γ ∈ S

Requirement: ω: Velocity’s influence factor

Requirement: φ1: Particle’s cognitive parameter

Requirement: φ2: Particle’s social parameter

1: α ← compute_initial_states (variables)

2: β ← α

3: for (all particles i from 1 to n) do

4: if (γ = null or f (βi) < f (γ)) then

5: γ ← βi

6: end if

7: end for

8: δ ← 0

9: repeat

10: α, δ ← compute_new_state(α,β,γ,δ,ω,φ1,φ2)

11: for (all particles i from 1 to n) do

12: if (f (αi) < f (βi)) then

13: βi ← αi

14: if (f (βi) < f (γ)) then

15: γ ← βi

16: end if

17: end if

18: end for

19: until (termination_condition(variables))

20: return γ

Although PSO was proposed to solve continuous

problems, several PSO versions have been developed

to be applied on discrete problems (e.g. (Carlisle and

Dozier, 2001; Clerc, 1999; Kennedy and Eberhart,

1997)).

3.1. The problem and the solution space

In RCCN problems are used two data sets to describe

a navigation system:

1. A “Weighted Connectivity Matrix” (Mc), of n x

n size, which is a weighted adjacency matrix and

can be represented by a graph. The Mc matrix

contains information about connections and

movement time (t(i j)) among the n nodes of the

navigation system.

2. A set of sequences of nodes that represent a

roadmap, i.e., each of the m navigation system

paths (Rk), where each path has its own quantity

s of nodes (n) (equation 1).

Rk = n(k 1), n(k 2), ... , n(k (s-1)), n(k s)

where 1≤k≤m; k,m,s ∈ ℕ
(1)

To handle the total movement time to the paths, as

well as to detect and to reduce collisions in the

navigation system, three matrices are used: the MTo

matrix to the original movement times, the MTe

matrix to the wait times and the MTr matrix to the

delay times, where solely the wait time’s matrix MTe

can be directly modified to manage the reduction of

the collisions.

Once a modification has been made to MTe, it is

necessary to compute the problem’s fitness function

value, i.e., the number of collisions in the navigation

system. Each evaluation of the problem’s fitness

function is known here as a function’s call.

3.2. Setting up initial states

Each one of the n particles α of the swarm has an

initial position appointed by its position property,

which it is an MTe matrix initialized with zero in all

its positions (equation 2). Due to this fact, all the

particles of the swarm have initially the same

position, i.e., the same initial number of collision

events.

MTeα={te(i,j)}α

where te(i,j)=0; 1≤i≤m; 1≤j≤n
(2)

3.3. How to Compute a New State

To compute a new particle’s position implies to

change the values of its MTe matrix elements, trying

to reduce the number of collision events in the

navigation system based on the model for RCCN

problems proposed. The new particle’s position is

reached executing a random search of a node with a

collision event, and once it has been found, randomly

choosing one of the paths involved in the collision

event and changing the wait time in the node located

before of the conflictive node in the chosen path; i.e.,

changing the wait time in an element of the particle’s

MTe matrix supported by a random path selection

criteria. It helps to make a binary decision to modify

either the first or the second conflictive path

(Algorithm. 2).

Algorithm 2. PSO’s new state procedure

Requirement: A particle’s wait times MTe matrix

1: repeat

2: randomly select a node from MTe

3: if (there is a collision in the node selected) then

4: randomly select a conflictive path

5: if (first conflictive path is selected) then

6: increase the wait time to the preceding node

at the first path to the node selected

7: else

8: increase the wait time to the preceding node

at the second path to the node selected

9: end if

10: end if

11: until (a collision event has been eliminated)

12: return the particle’s MTe matrix updated

In this way, the position of the particles at each

iteration of the heuristic would have a probabilistic

chance of being modified (Cervantes, et al., 2005;

Poli, et al., 2007) in either the first or the second

path, conducting to reach particle’s new positions in

a stochastic way which produces different problem’s

fitness function values to the particles of the swarm;

hence, there can be multiple wait time’s

configurations to reduce collisions in a navigation

system.

3.4. Termination Criteria

There are two criteria to stop the heuristic:

1. When a specific number of function calls have

been reached.

2. When there are not collisions in the navigation

system.

4. APPLICATION OF THE PSO BASED

HEURISTIC TO AN RCCN PROBLEMS

INSTANCE

To test the PSO approach solving RCCN problems, a

Java application was implemented and applied to a

RCCN problems instance with a roadmap with 27

nodes and 5 routes where there are 6 collision events

(Fig. 1).

Fig. 1. An RCCN problems instance with 27 nodes, 5

navigation paths, and 6 collision events.

5. RESULTS

The PSO inspired heuristic applied to the RCCN

problems instance using the number of function’s

calls as the termination criteria were executed with 6

different termination criteria values to observe its

performance (Fig. 2, Table 1).

Fig. 2. PSO inspired heuristic’s behavior using a

RCCN problems instance.

Table 1. Results of PSO inspired heuristic using a

RCCN problems instance

Termination criteria

(function’s calls)

Best problem’s fitness

function value

(number of collisions)

0 6

10 6

20 3

30 2

40 1

60 1

Table 1 depicts that once the fitness function

evaluation has been executed 40 or 60 times, the

navigation system remains with a collision event; this

is due to the restriction that indicates no wait time at

the first node of a path. However, the collision event

in node 18 between paths 4 and 5 cannot be

eliminated.

A configuration to the RCCN problems instance

presented here is described below: the particle’s MTe

matrix with the best problem’s fitness function value

determines the wait times to avoid collision events

displayed in Table 2. Be aware that the path R1 does

not change its wait times, i.e., its movement time

remains unchanged.

Table 2. Wait times to the RCCN problems instance

determined using the PSO inspired heuristic

Path
Configuration

Node Wait time

R2 9 2

R 3 8 1

R 4 27 1

R 5 8 1

6. CONCLUSIONS

Due to the fact that reducing the amount of collisions

between mobile objects in navigation systems can be

deemed as an optimization problem it is necessary to

establish methodologies to try to solve this kind of

problematic.

In this paper is presented a local search heuristic

inspired in PSO to be applied to Reducing Collisions

in Constrained Navigation (RCCN) problems with

the goal to detect and reduce collisions in navigation

systems, generating wait times in previous nodes to

those which have collision events in the intersection

of paths for mobile objects.

As a consequence of the application of the heuristic

proposed to an instance of RCCN problems, it is

observable that the heuristic is on average reducing

collisions, i.e., each of the heuristic executions

provides a solution result with different wait times

configurations for the navigation system.

Actually we are working on generating test instances

with a higher number of collision events in order to

be able to implement the heuristic inspired on PSO

using these test instances to obtain the average

performance of the heuristic. The performance of the

heuristic results provides the elements to compare it

versus other techniques.

ACKNOWLEDGMENTS

This research was supported by the Consejo Nacional

de Ciecia y Tecnología (CONACYT) and the

Dirección General de Educación Superior

Tecnológica (DGEST), project number 4572.12-P.

Authors thank by the grammar check to Jose Urbina

from Instituto Tecnológico de León.

REFERENCES

Carlisle, A. and Dozier, G. (2001). An Off-The-Shelf

PSO. In Proceedings of The Workshop On

Particle Swarm Optimization.

Cervantes, A., Galvan, I., and Isasi, P. (2005). A

Comparison Between the Pittsburgh and

Michigan Approaches for the Binary PSO

Algorithm. In Evolutionary Computation, 2005.

The 2005 IEEE Congress on, volume 1, pages

290-297. IEEE.

Chiew, K. and Qiu, S. (2009). Scheduling and

Routing of AMOs in an Intelligent Transport

System. IEEE Transactions on Intelligent

Transportation Systems, 10-3:547-552.

Clerc, M. (1999). The Swarm and the Queen:

Towards a Deterministic and Adaptive Particle

Swarm Optimization. In Evolutionary

Computation, 1999. CEC 99. Proceedings of the

1999 Congress on, volume 3. IEEE.

Engelbrecht, A. P. (2005). Fundamentals of

Computational Swarm Intelligence, volume 1.

Wiley London.

Floreano, D. and Mattiussi, C. (2008). Bio-Inspired

Artificial Intelligence: Theories, Methods, and

Technologies. Intelligent Robotics and

Autonomous Agents. The MIT Press, 1 edition.

Gendreau, M., Potvin, J., Brumlaysy, O., Hasle, G.,

and Lkketangen, A. (2008). Metaheuristics for the

Vehicle Routing Problem and its Extensions: A

Categorized Bibliography. The Vehicle Routing

Problem: Latest Advances and New Challenges,

pages 143-169.

Ghasemzadeh, H., Behrangi, E., and Abdollahi, A.

M. (2009). Con

ict-free Scheduling and Routing of Automated

Guided Vehicles in Grid Topologies. Robotics

and Autonomous Systems, 57(6-7):738-748.

Kala, R., Shukla, A., and Tiwari, R. (2010). Fusion

of Probabilistic A* Algorithm and Fuzzy

Inference System for Robotic Path Planning.

Artificial Intelligence Review, 33(4):307-327.

Kennedy, J. and Eberhart, R. (1995). Particle Swarm

Optimization. In Neural Networks, 1995.

Proceedings., IEEE International Conference on,

volume 4, pages 1942-1948. IEEE.

Kennedy, J. and Eberhart, R. (1997). A Discrete

Binary Version of the Particle Swarm Algorithm.

In Systems, Man, and Cybernetics, 1997.

Computational Cybernetics and Simulation., 1997

IEEE International Conference on, volume 5,

pages 4104-4108. IEEE.

Lin, C. T. (2011). Study on Vehicle Routing

Problems With Time Windows Based on

Enhanced Particle Swarm Optimization

Approach. Elsevier.

Mirtich, B. (1997). Efficient Algorithms for Two-

Phase Collision Detection. Practical Motion

Planning in Robotics: Current Approaches and

Future Directions, pages 203-223.

Peasgood, M., Clark, C., and McPhee, J. (2008). A

Complete and Scalable Strategy for Coordinating

Multiple Robots Within Roadmaps. Robotics,

IEEE Transactions on, 24(2):283-292.

Peng, J. and Akella, S. (2005). Coordinating Multiple

Robots With Kinodynamic Constraints Along

Specied Paths. The International Journal of

Robotics Research, 24(4):295-310.

Poli, R., Kennedy, J., and Blackwell, T. (2007).

Particle Swarm Optimization. Swarm

Intelligence, 1:33-57.

Qiu, L. and Hsu, W. (2003). Continuous Scheduling

of AGVs in a Grid-Like Path Topology. In

Intelligent Vehicles Symposium, 2003.

Proceedings. IEEE, pages 62-67. IEEE.

Russell, S. J., Norvig, P., and Davis, E. (2009).

Articial Intelligence: a Modern Approach.

Prentice Hall, Upper Saddle River, NJ, 3 edition.

Sharma, V., Savchenko, M., Frazzoli, E., and

Voulgaris, P. (2005). Time Complexity of

Sensor-Based Vehicle Routing. In Robotics:

Science and Systems, pages 297-304. Citeseer.

Sujit, P. B., Lucani, D. E., and Sousa, J. B. (2012).

Bridging Cooperative Sensing and Route

Planning of Autonomous Vehicles. IEEE Journal

on Selected Areas in Communications, 30 No.

5:912-923.

Thiem, S. and Lässig, J. (2011). Comparative Study

of Different Approaches to Particle Swarm

Optimization in Theory and Practice. In Particle

Swarm Optimization. Theory, Techniques and

Applications, chapter 7, pages 127-167. Olsson,

A. E., editor, Nova Science Publishers, Inc.

Törnquist Krasemann, J. (2011). Design of an

effective algorithm for fast response to the re-

scheduling of railway traffic during disturbances.

Transportation Research Part C: Emerging

Technologies.

