
In the First International Conference on New Technologies, Mobility and Security (NTMS'2007), Telecom
Paris, France, 2 to 4 May, 2007

Preventing Instability in Rule-Based Multi-Agent
Systems; A Challenge to the Ambient Intelligence Vision

Victor Zamudio1 and Vic Callaghan1

1 Department of Computer Science, University of Essex. Wivenhoe Park
CO4 3SQ, United Kingdom
{vmzamu, vic}@essex.ac.uk

Abstract. Multi-agent systems underpin the vision for ambient intelligence.
However, developing multi-agent systems is a complex and challenging
process. For example, pervasive computing has been found susceptible to
instability, due to unwanted behaviour arising from unplanned interaction
between rule based agents. This instability is impossible to predict, as it
depends on the rules of interaction, the initial state of the system, the user
interaction, and in the time delay of the system (due to network traffic, different
speed of processing, etc). In this paper we present a theoretical framework, an
Interaction Network (IN), together with a communication locking strategy that
can be used to identify and eliminate this problem. We present experimental
results based on simulations and a physical implementation that demonstrate the
effectiveness of these methods.

Keywords: Agent Challenges, Pervasive Computing, Instability, Periodic
Behaviour, Multi-Agents.

1 Introduction

Multi-agent systems underpin the vision for ambient intelligence. At the heart of this
vision is the interconnection of vast numbers of devices such as lights, heaters, TVs,
telephones, etc., each programmed according to a certain rules based on the state of
the world, including other devices These interconnections enable the system to be
programmed with interdependent actions in a simple way, whether it be manual or
automatic [1, 2, 3]. This is a very challenging problem, not only due to the complexity
of the rules of the interconnected devices, but also because some of the devices could
be nomadic, and there could be synchronizations problems due to temporal delays
(network latency, speed of processing, etc). These temporal delays could contribute to
unstable behaviour. We have seen this phenomenon in our own systems and it is being
observed increasingly in pervasive computing system as the architectures move from
centralized to distributed control [4].

In other domains, such as complex and dynamic systems, it has been shown that it is
not possible to determine, based on the rules of interaction, if a given system will
suffer from instability [5]. However, it is possible to prevent it and we have developed
and tested such a strategy, based on the detection of loops in an Interaction Network
introduced in the next section, and a method for locking devices with least functional
impact on the performance of the system.

© Essex University April 2007 1

2 Interaction Networks

A directed graph G consists of a finite set V of vertices or nodes, and a binary

relation E onV . The graph G is denoted as ()EV , . The relation is called the

adjacency relation. If w is relative of v (ie, () Ewv ∈,) then w is adjacent to v [6].

An agent A is an autonomous device with a binary state { }1,0∈s , where 0 means

that the agent is off, and 1 means that the agent is on. If we have n autonomous

devices agents nAAA ,, 21 the state of the system is ()nsssS 21= . Each agent

iA has two rules: i) if iφ then 1=is ii) If iψ then 0=is where ψφ and are

boolean functions that depend on the states of the agents.

An Interaction Network (IN) is a directed graph ()EV , in which the vertex Vv∈
is a pervasive autonomous agent A and () Evv ji ∈, if the Boolean functions jφ or

jψ of the pervasive autonomous agent jA depends on the binary state is of the agent

iA . Let SU ⊆ be a subset of S . Because of the dynamics of the system, the

system will produce a sequence of states pUUU ,, 21 . If this sequence of states is

periodic then the subsystem U is said to be periodic.
The functionality of a node is defined as the number of descendants in the Interaction
Network. This characteristic of a node is very important, as it shows the impact of a
device in the system, in terms of the number of devices whose rules could be
triggered. Fig. 1 provides an example of an Interaction Network, showing the
dependencies of 5 devices or services: Sofa Sensor, Light Sensor, MP3 Player, Light,
and Word.

3 Intelligent Locking

In pervasive environments, rule-based devices could be interacting according to the
rules programmed by several users. This complex rules, together with the state of the
system and the times delays could lead the system to unwanted instable states
(oscillations). As we have commented previously, it is not possible to predict, in
general, if a set of rules will produce such instabilities, as in any dynamic system, the
behaviour of the system will depend not only on the rules, but on the initial
conditions. Besides that, the user could be interacting with the environment,
generating perturbations to the system. However, the presence of a loop in the
Interaction Network associated indicates that the potential problem of instability and
cyclic oscillations could merge at any time. Our strategy to prevent this unwanted
behaviour is based on

1. the detection of loops in the Interaction Network
2. For each loop

o Find the node member of the loop which minimizes the
functionality function

© Essex University April 2007

o Lock this node
Step (2) includes learning from the user their preferred “locking preferences”

(where there are choices to affect the user)

Fig. 1. Interaction Network showing a loop in dashed lines.

4 Experimental Results

Our strategy was tested in two ways, first with computer simulations and secondly
using a real UPnP (Universal Plug and Play) implementation based around the
Siemens Java SDK for UPnP technologies [9].

4.1 Simulations

The simulator was programmed using Mathematica ™ 5.1 [7], a programming
language with powerful tools for quick and sound implementation. In particular, it
includes the package Combinatorica, supporting graph theory, graphics, and
combinatorics [8]. The simulation had the advantage over the real implementation
(see next section) that it was able to mimic larger numbers of devices and support a
more flexible experimental sturucture (eg arbitrary devices and rules could quickly be
created).

Using Mathematica ™, a number of parameters can be controlled, for example the
number of agents involved, the number of iterations, the probability of perturbations,
the probability of interconnection between two agents. In order to test the general
approach, we generated random topologies of differing densities (controlling the
probability of connexion between agents). It is well known that the gates AND and
OR (in conjunction with the negation) are able to reproduce any Boolean function.
Using this principle, we assigned a random (and fixed) number of boolean function to

© Essex University April 2007

each device, as a rule of behaviour; thus the rules assigned to each agent could be
represented as a binary string, where a 0 and 1 mean an OR and AND gate
respectively. As mentioned before, besides the rules of interaction, one of the key
factors involved is the initial state of the system (in this case, we always begin with a
random initial state) which is then perturbed by user actions.

One of the important parts of the algorithm, besides the finding of loops, is the
process of choosing which agent (or node) to lock. Thus, for each loop we would
normally need to calculate the functionality of each node. However as, in our
experiment, the functionality function of all the members of a loop is the same, we
excluded the descendant members of the loop from the calculations.

We tested our approach successfully with different and randomly produced topologies
and rules of interaction, together with random perturbations.

In Fig. 2 we have a system with 7 nodes. This topology has one loop {6,4,6}. The
rules of interaction are coded as {0,0,0,1,0,1,0}.

Fig. 2. Interaction Network with only one cycle {6,4,6}. Detail of the cycle in dashed lines.

Node 6 has 1 descendant, and node 4 has no descendants (as we do not include
members of the loop). Node 4 has the minimum functionality, and as a result, the
locking vector is {1,1,1,0,1,1,1}. In Fig. 3 we have the response of the system without
any locking, showing cyclic instability; this instability can be removed effectively
using the locking mechanism (see Fig. 4)

© Essex University April 2007

Fig. 3. Evolution of the system with 7 agents and one cycle {6,4,6}

Fig. 4. Evolution of the system with 7 agents, one isolated cycle {6,4,6}, where the node 4 has been
locked, and the oscillations have been removed

In Fig 5 we have a system with 10 nodes and two cycles {{8,5,6,7,8},{4,2,3,5,4}},
that share the node 5. The rules of interaction are coded as {0,0,0,0,1,1,1,1,1,0}.
Before the locking mechanism was activated, the system showed instabilities (see Fig.
6). For our graphical representation we use the decimal equivalence of the binary
representation of the global state of the system. The list of parent-descendants for the
loops are {{4,1},{2,1},{3,2},{5,4}} and {{8,0},{5,6},{6,1},{7,0}}. In the first loop
the two nodes 4 and 2 both have the minimum number of descendants (1), and 4 is
taken. In the second case 8 and 7 minimizes the functionality function, and 8 is taken.
With these results the locking vector for the system is {1,1,1,0,1,1,1,0,1,1}

We ran the simulation several times, and our strategy removed the oscillations, as can
be seen in Fig. 7.

Fig. 5 Interaction Network with 10 nodes and two coupled cycles. In dashed lines we have the two
loops, sharing node 5.

© Essex University April 2007

Fig. 6 Behaviour of the system with 10 agents. Two modes of oscillation can be seen, together with
some perturbations. In this case the locking mechanism has not been applied.

Fig. 7 Behaviour of the system with 10 agents. The instabilities have been removed by the locking
mechanism. Some perturbations are shown in the figure.

4.2 Testing Real Devices

We implemented the strategy in UPnP (Universal Plug and Play) based around the
Siemens Java SDK for UPnP technologies [9]. An important difference to the
simulation experiments is that this network includes both delays (eg propagation,
stack handling etc) and user interaction (eg turning lights on off) that are a more
accurate refection of a real environment. Thus, every device (lights in this case) has a
user interface which allows the user to turn it on and off.

© Essex University April 2007

Fig. 8. Interaction Network (IN) of the experiment. In this case we have 4 devices (lights) with
the rules defined previously.

The rules of interaction were set to try to emulate the state (non-inverted and inverted)
of the adjacent device. The code can be seen in Table 1.

Table 1. Rules of interaction for the system with 4 devices.

//********rules for service1**********
if (tempService[3] && lockService[0]){
scp.turnOn(testService1);
service1 = tempService[3];
}
else if(! tempService[3] && lockService[0]){
scp.turnOff(testService1);
service1 = tempService[3];
}
//********rules for service2**********
if (tempService[0] && lockService[1]){
scp.turnOn(testService2);
service2 = tempService[0];
}
else if(! tempService[0] && lockService[1]){
scp.turnOff(testService2);
service2 = tempService[0];
}
//********rules for service3**********
if (tempService[1] && lockService[2]){
scp.turnOn(testService3);
service3 = tempService[1];
}
else if(! tempService[1] && lockService[2]){
scp.turnOff(testService3);
service3 = tempService[1];
}
//********rules for service4**********
if (tempService[2] && lockService[3]){
scp.turnOn(testService4);
service4 = tempService[2];

© Essex University April 2007

}
else if(! tempService[2] && lockService[3]){
scp.turnOff(testService4);
service4 = tempService[2];
}

Fig. 9. In this figure we are showing a screenshot of the system running, with 4 devices (lights in this
case). The lights are changing according to the rules, and the state of them is shown in the image.

In Fig. 10 se can see the behaviour of a system with 4 devices (lights) resulting in
different modes of oscillations due to the perturbations from the user interaction.

Fig. 10. In this figure we are showing the evolution of the system with two lights on as initial
condition, no locking and perturbation of the user.

When the locking is enabled, the oscillations are clearly prevented, leading the system
to a stable state (unless the user decides something else), as we can see in Fig. 11.

© Essex University April 2007

Fig. 11. In this figure we are showing the evolution of the system with one light on initially,
with locking and perturbations from the user (due to the user interaction, we could have more
than one light on at a time).

With 11 devices (lights), the strategy proved to work successfully. In Fig. 12 we can
see a screenshot of the system running. Unstable behaviour was found under different
initial conditions, but removed successfully, as can bee seen in Fig. 13.

© Essex University April 2007

Fig. 12. Screenshot of the system, running the system with 11 devices. .

Fig. 13. Evolution of the system with 11 devices, implementing locking and showing user
interaction.

4.3 Results Discussion

We have implemented and tested the strategy of locking using both computer
simulations and real devices based on a UPnP implementation using the Siemens Java
SDK for UPnP technologies. In the first case we had two interaction network, with 7
and 10 nodes respectively (see Figs. 2 and Fig. 5) and randomly generated rules of
interaction, together with random perturbations emulating the user interaction with the
system. The systems showed instability (see Fig. 3 and Fig. 6); however, when the
locking mechanism is implemented (in the first case locking node 4, and in the second
case locking nodes 4 and 8, all of them minimizing the impact on the network), the
instability is satisfactory removed (see Fig. 4 and Fig. 7). In the UPnP
implementation, we had an interaction network consisting of 4 nodes forming a single
loop in which the user was able to interact with the system (turning on/off the lights).
Without the locking cyclic instability can be observed (Fig 10), showing different
modes of oscillation. However, the locking mechanism effectively stopped the cyclic
behaviour (see Fig. 11).The same experiments were carried out successfully with a
system with 11 devices (see Fig. 13). These results are encouraging, even with the
preliminary UPnP implementation, as the computer simulations have shown the
locking to be effective on larger and complex topologies as the one shown in Fig. 5,
with two overlapping loops (sharing node 5).

5 Conclusions and Future Work

In this paper we have described a challenge to achieving the vision for ambient
intelligence; how to overcome cyclic instability in coordinating multi agent systems.
As pervasive computing paradigms, such as ambient intelligence, utilise systems of
interdependent agents, we contend that such behaviour represents a significant
obstacle to the commercial exploitation of this technology.

In a bid to address this challenge we have devised a formal framework for
describing the problem (Interaction Networks) and offer a methodology for

© Essex University April 2007

overcoming the problem based on locking nodes in a pervasive computing network.
We have used both simulation and real devices to show the effectiveness of our
methods. Simulation gives us great flexibility allowing us to experiment with arbitrary
structures and sizes of networks (eg showing that the approach is scalable) whilst the
experiments with actual devices has allowed us to see the effects of network and
processing delays, together with user interaction. User interaction plays a fundamental
role, which was not easy to see in computer simulations. For example, when the
system has reached a stable state and the user interacts with it, it is possible to see the
changes suffered by the other devices, and when the locking mechanism is activated,
how these changes are stopped, as the device locked prevents the propagation of the
changes. On the other hand, the inclusion of sensors (light, movement, pressure,
temperature, etc) will increase the complexity of the topology of the Interaction
Network (but not the dynamic properties of the system!), as they cannot be part of a
loop (they could only be fathers in the digraph), because its state depends on
environmental conditions or user behaviour

Using these approaches we have shown that the locking mechanism is effective in
the elimination of the unwanted cyclic behaviour, although the cost on the overall
system is some temporary loss of functionality

As a future work we are planning to test our strategy with larger more complex
topologies (in particular with multiple coupled loops) and with more complex rules.
Also, as locking a node will impair, temporarily, some functionality of the system, the
choice of what to lock and how long to lock (where there are options) is of some
significance to the user. Thus a next step in our work is to experiment with a user
based “locking preference” system learning. For this we will run experiments in our
test bed (iDorm1 – a full size apartment that is fitted with pervasive computing
technology and agents) in order to provide additional evidence of the strategy, and to
refine the locking mechanism with information of the user’s preferences.

Acknowledgments. Victor Zamudio would like to acknowledge the support of the
National Mexican Council for Science and Technology (CONACyT).

References

1. V. Callaghan, M. Colley, H. Hagras, J. Chin, F. Doctor, G. Clark. “Programming iSpaces: A
Tale of Two Paradigms”, in iSpaces. Springer Verlag, 2005, Chapter 24.

2. J. Chin, V. Callaghan, G. Clarke. “An End-User Programming Paradigm for Pervasive
Computing Applications”, International Conference on Pervasive Services, 26-29 June 2006,
Lyon, France.

3. Hagras,H.A.K., Callaghan,V., Colley,M.J., Clarke, G.S., Pounds-Cornish,A., Duman,H., 'A
Fuzzy Logic Embedded-Agent Approach to Ambient Intelligence in Pervasive Computing
Environments', IEEE on Intelligent Systems, 2004.

4. Estrin, D. Culler, D. Pister, K. Sukhatme, G. Connecting the physical world with pervasive
networks. Pervasive Computing, IEEE. Jan-March 2002, Volume: 1, Issue: 1, pages: 59-69.

5. Weisbuch G. Complex Systems. Lecture Notes Volume II. Santa Fe Institute Studies In the
Sciences of Complexity. 1991.

6. Discrete Mathematics for Computer Science. G. Haggard, J. Schlipf and S. Whitesides.
Thomson 2006

7. Wolfram S. The Mathematica Book, 5th ed. Wolfram Media, 2003.

1 http://iieg.essex.ac.uk/idorm

© Essex University April 2007

8. Pemmaraju S, Skiena S. Computational Discrete Mathematics: Combinatorics and Graph
Theory with Mathematica™. Cambridge University Press 2003.

9. http://www.plug-n-play-technologies.com/

© Essex University April 2007

